Active learning is a special case of machine learning where a model can query a user for input. In this post, we will see how we can use active learning to label large data sets. For most machine learning tasks, large amounts of labeled data is needed is need for model training. However, the process of labeling data can be extremely time consuming and/or expensive. Using active learning, we can leverage a classification model to do most of the labeling for us, so that we only need to label samples when it is most needed.
Read the rest of the article at Mindboard’s Medium channel.
About the author