Category Archive Gated Recurrent Unit

LSTM vs GRU: Experimental Comparison

A Recurrent Neural Network is a type of Artificial Neural Network that contains shared neuron layers between its inputs through time. This allows us to model temporal data such as video sequences, weather patterns or stock prices. There are many ways to design a recurrent cell, which controls the flow of information from one time-step to another. A recurrent cell can be designed to provide a functioning memory for the neural network. Two of the most popular recurrent cell designs are the Long Short-Term Memory cell (LSTM) and the Gated Recurrent Unit cell (GRU).

Read the rest of the article at Mindboard’s Medium channel.

Input Window Size for Deep Recurrent Reinforcement Learning

Deep Recurrent Reinforcement Learning makes use of a Recurrent Neural Network (RNN), such as Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) based networks, for learning a value function that maps environment states to action values. Recurrent Neural Networks are useful for modeling time-series data since the network maintains a memory, learning to retain useful information from inputs of prior model inferences. Every time the model is called, the memory is updated in correspondence with the current inputs.

Read the rest of the article at Mindboard’s Medium channel.