Category Archive Long Short-Term Memory

LSTM vs GRU: Experimental Comparison

A Recurrent Neural Network is a type of Artificial Neural Network that contains shared neuron layers between its inputs through time. This allows us to model temporal data such as video sequences, weather patterns or stock prices. There are many ways to design a recurrent cell, which controls the flow of information from one time-step to another. A recurrent cell can be designed to provide a functioning memory for the neural network. Two of the most popular recurrent cell designs are the Long Short-Term Memory cell (LSTM) and the Gated Recurrent Unit cell (GRU).

Read the rest of the article at Mindboard’s Medium channel.

LSTM for Time Series Prediction — Part I

A time series contains a sequence of data points observed at specific intervals over time. A time series prediction uses a model to predict future values based on previously observed values. The natural temporal order of time series data makes analysis of time series different from cross-sectional or spatial data analyses, neither of which depends on a time component.

Time series predictions can be useful in a variety of settings, from processing signal data streaming from a sensor at an industrial site to monitoring trends in a financial market or maintaining inventory in a commercial setting. In all these scenarios, recent data can be used to inform predictions about future goal values.

Read the rest of the article at Mindboard’s Medium channel.

Input Window Size for Deep Recurrent Reinforcement Learning

Deep Recurrent Reinforcement Learning makes use of a Recurrent Neural Network (RNN), such as Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) based networks, for learning a value function that maps environment states to action values. Recurrent Neural Networks are useful for modeling time-series data since the network maintains a memory, learning to retain useful information from inputs of prior model inferences. Every time the model is called, the memory is updated in correspondence with the current inputs.

Read the rest of the article at Mindboard’s Medium channel.