LSTM for Time Series Prediction — Part I

LSTM for Time Series Prediction — Part I

A time series contains a sequence of data points observed at specific intervals over time. A time series prediction uses a model to predict future values based on previously observed values. The natural temporal order of time series data makes analysis of time series different from cross-sectional or spatial data analyses, neither of which depends on a time component.

Time series predictions can be useful in a variety of settings, from processing signal data streaming from a sensor at an industrial site to monitoring trends in a financial market or maintaining inventory in a commercial setting. In all these scenarios, recent data can be used to inform predictions about future goal values.

Read the rest of the article at Mindboard’s Medium channel.

About the author

Guru Natarajan administrator