In the light of problems caused due to poor crowd management, such as crowd crushes and blockages, there is an increasing need for computational models which can analyze highly dense crowds using video feeds from surveillance cameras. Crowd counting is a crucial component of such an automated crowd analysis system. This involves estimating the number of people in the crowd, as well as the distribution of the crowd density over the entire area of the gathering. Identifying regions with crowd density above the safety limit can help in issuing prior warnings and can prevent potential crowd crushes. Estimating the crowd count also helps in quantifying the significance of the event and better handling of logistics and infrastructure for the gathering.
Read the rest of the article at Mindboard’s Medium channel.