A Recurrent Neural Networks (RNN) is a class of Artificial Neural Network that contains connections along a temporal axis, producing a functioning memory of prior network inferences that influences the network’s output. Two of the most common types of RNN are the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) cells. LSTMs and GRUs are designed for long-term memory capability. In both cases, the RNN cell maintains a hidden memory state that undergoes an alteration after every inference call.
Read the rest of the article at Mindboard’s Medium channel.
For deeper networks, the obsession with image classification tasks seems to have also caused tutorials to appear on the more complex convolutional neural networks. This is great if you’re into that sort of thing, however, if someone is more interested in data with timeframes then recurrent neural networks (RNNs) come in handy.
Read the rest of the article at Mindboard’s Medium channel
Deep Recurrent Reinforcement Learning makes use of a Recurrent Neural Network (RNN), such as Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) based networks, for learning a value function that maps environment states to action values. Recurrent Neural Networks are useful for modeling time-series data since the network maintains a memory, learning to retain useful information from inputs of prior model inferences. Every time the model is called, the memory is updated in correspondence with the current inputs.
Read the rest of the article at Mindboard’s Medium channel.
Deep Recurrent Neural Networks (RNN) are a type of Artificial Neural Network that takes the networks previous hidden state as part of its input, effectively allowing the network to have a memory. This makes RNNs useful for modeling sequential or time-series data such as stock prices. However, training RNNs on sequences greater than a few hundred time steps can be difficult. In this post, we will explore three tools that can allow for more efficient training of RNN models with long sequences: Optimizers, Gradient Clipping, and Batch Sequence Length.
Read the rest of the article at Mindboard’s Medium channel.